Bridging data models and terminologies to support adverse drug event reporting using EHR data.
نویسندگان
چکیده
INTRODUCTION This article is part of the Focus Theme of METHODs of Information in Medicine on "Managing Interoperability and Complexity in Health Systems". BACKGROUND SALUS project aims at building an interoperability platform and a dedicated toolkit to enable secondary use of electronic health records (EHR) data for post marketing drug surveillance. An important component of this toolkit is a drug-related adverse events (AE) reporting system designed to facilitate and accelerate the reporting process using automatic prepopulation mechanisms. OBJECTIVE To demonstrate SALUS approach for establishing syntactic and semantic interoperability for AE reporting. METHOD Standard (e.g. HL7 CDA-CCD) and proprietary EHR data models are mapped to the E2B(R2) data model via SALUS Common Information Model. Terminology mapping and terminology reasoning services are designed to ensure the automatic conversion of source EHR terminologies (e.g. ICD-9-CM, ICD-10, LOINC or SNOMED-CT) to the target terminology MedDRA which is expected in AE reporting forms. A validated set of terminology mappings is used to ensure the reliability of the reasoning mechanisms. RESULTS The percentage of data elements of a standard E2B report that can be completed automatically has been estimated for two pilot sites. In the best scenario (i.e. the available fields in the EHR have actually been filled), only 36% (pilot site 1) and 38% (pilot site 2) of E2B data elements remain to be filled manually. In addition, most of these data elements shall not be filled in each report. CONCLUSION SALUS platform's interoperability solutions enable partial automation of the AE reporting process, which could contribute to improve current spontaneous reporting practices and reduce under-reporting, which is currently one major obstacle in the process of acquisition of pharmacovigilance data.
منابع مشابه
Semantic-sensitive Extraction of EHR data to Support Adverse Drug Event Reporting
The reasons behind adverse drug events (ADE) getting underreported by medical professionals are overlooking complex drug reactions and dealing with cumbersome manual process of reporting ADE based on patient profiles. We present an initial design of SALUS ICSR reporting tool that supports the reporting of ADE to regulatory authorities with services (i) enabling automatic prepopulation of report...
متن کاملمقایسه روشهای اپیدمیولوژیک در شناسایی سیگنالهای عوارض دارویی ایران
Background and Objectives:To compare three different methods of signal detection applied to the Adverse Drug Reactions registered in the Iranian Pharmacovigilance database from 1998 to 2005. Materials and Methods:All Adverse Drug Reactions (ADRs) reported to Iranian Pharmacovigilance Center from March 1998 through January 2005, were included in the analysis. The data were analyzed based on thre...
متن کاملطراحی و روش نمونهگیری مطالعه آگاهی، نگرش و عملکرد خانوارها و کارکنان بهداشتی در خصوص تغذیه و ریزمغذیها در استانهای پایلوت برنامه
Background and Objectives:To compare three different methods of signal detection applied to the Adverse Drug Reactions registered in the Iranian Pharmacovigilance database from 1998 to 2005. Materials and Methods:All Adverse Drug Reactions (ADRs) reported to Iranian Pharmacovigilance Center from March 1998 through January 2005, were included in the analysis. The data were analyzed based on thr...
متن کاملEnhancing Adverse Drug Event Detection in Electronic Health Records Using Molecular Structure Similarity: Application to Pancreatitis
BACKGROUND Adverse drug events (ADEs) detection and assessment is at the center of pharmacovigilance. Data mining of systems, such as FDA's Adverse Event Reporting System (AERS) and more recently, Electronic Health Records (EHRs), can aid in the automatic detection and analysis of ADEs. Although different data mining approaches have been shown to be valuable, it is still crucial to improve the ...
متن کاملReporting Adverse Drug Reactions With Emphasis on the Designing National Minimum Data Set
Objective: One of the most common causes of death is the adverse drug reactions. The volume and dispersion of information is one of the problems of information systems for registering unwanted adverse drug reactions. This study aims to design a National Minimum Dataset (NMDS) for reporting the unwanted adverse drug reactions. Methods: This descriptive-comparative study was conducted in Mashhad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Methods of information in medicine
دوره 54 1 شماره
صفحات -
تاریخ انتشار 2015